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Questions about computation

Q. What is a general-purpose computer?
Q. Are there limits on the power of digital computers?
Q. Are there limits on the power of machines we can build?

s

David Hilbert Kurt Godel Alan Turing Alonzo Church John von Neumann



A simple model of computation: DFAs

Tape.
« Stores input.
e One arbitrarily long strip, divided into cells.
« Finite alphabet of symbols.

Tape head.
 Points to one cell of tape. o tafe
« Reads a symbol from active cell. I T [oJiotii001
-« Moves one cell at a time. 0 o | e
yes no head

tape head

tape n 1 0 1 1 1 0 0 1

Q. Is there a more powerful model of computation?
A. Yes.



A universal model of computation: Turing machines

Tape.
« Stores input, output, and intermediate results.

« One arbitrarily long strip, divided into cells. tape

head

« Finite alphabet of symbols. |
tape
Y I8
Tape head. P s = esssss N\

« Points to one cell of tape.

@ START

« Reads a symbol from active cell. @RESET

« Writes a symbol to active cell.
e Moves one cell at a time.

tape head

tape N 1 1 n 0 + 1 0 1 1 #

Q. Is there a more powerful model of computation?

A. NO! <«—— most important scientific result of 20th century?



Church-Turing thesis (1936)

Turing machines can compute any function that can be computed by a
physically harnessable process of the natural world.

Remark. "Thesis" and not a mathematical theorem because it's a statement
about the physical world and not subject to proof.
but can be falsified
Use simulation to prove models equivalent.
« Android simulator on iPhone.
« iPhone simulator on Android.

Implications.
« No need to seek more powerful machines or languages.

e Enables rigorous study of computation (in this universe).

Bottom line. Turing machine is a simple and universal model of computation.



Church-Turing thesis: evidence

« 8 decades without a counterexample. 7 "universal”
« Many, many models of computation that turned out to be equivalent.

enhanced Turing machines multiple heads, multiple tapes, 2D tape, nondeterminism
untyped lambda calculus method to define and manipulate functions
recursive functions functions dealing with computation on integers
unrestricted grammars iterative string replacement rules used by linguists
extended L-systems parallel string replacement rules that model plant growth
programming languages Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel
random access machines registers plus main memory, e.g., TOY, Pentium
cellular automata cells which change state based on local interactions
guantum computer compute using superposition of quantum states
DNA computer compute using biological operations on DNA




A question about algorithms

Q. Which algorithms are useful in practice?
« Measure running time as a function of input size N.
« Useful in practice ("efficient”) = polynomial time for all inputs.

vl

von Neumann Nash Godel Cobham Edmonds Rabin
(1953) (1955) (1956) (1964) (1965) (1966)

Ex 1. Sorting N items takes Nlog N compares using mergesort.
Ex 2. Finding best TSP tour on N points takes N! steps using brute search.

constants a and b tend to be small, e.g., 3 N2

Theory. Definition is broad and robust. /
Practice. Poly-time algorithms scale to huge problems.



Exponential growth

Exponential growth dwarfs technological change.
« Suppose you have a giant parallel computing device...
« With as many processors as electrons in the universe...
« And each processor has power of today's supercomputers...

« And each processor works for the life of the universe... (30,2%)

quantity value

electrons in universe 1 1079

supercomputer instructions per second t 1013

age of universe in seconds 1017

1 estimated

« Will not help solve 1,000 city TSP problem via brute force.

(20, 220)

1000! >> 101000 >> 1079 x 1013 x 1017 \



Questions about problems

Q. Which problems can we solve in practice?
A. Those with poly-time algorithms.

Q. Which problems have poly-time algorithms?
A. Not so easy to know. Focus of today's lecture.

many known poly-time algorithms for sorting no known poly-time algorithm for TSP




Bird's-eye view

Def. A problem is intractable if it can't be solved in polynomial time.
Desiderata. Prove that a problem is intractable.

input size=c+1g K
Two problems that provably require exponential time. /

« Given a constant-size program, does it halt in at most K steps?
e Given N-by-N checkers board position, can the first player force a win?

N\

using forced capture rule

(\\\HA\_TIw

©© ==
@@ [

\\XQ @O =8

Alan designed the perfect computer

Frustrating news. Very few successes.
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Four fundamental problems

LSOLVE. Given a system of linear equations, find a solution.

Oxp + b+ 1y, =4 Yo = -l variables are
(—

B b4 = 2 o 2 oo 2 real numbers
Ox, + 3x, +15x, = 36 x, = 2

LP. Given a system of linear inequalities, find a solution.
48x, +16x, +119x, = 88 x, = 1 variables are
Sxo + 4x + 35x, =13 x o= 1 real numbers
15x, + 4x, + 20x, = 23 x, = VY

Xo - X x, = 0

ILP. Given a system of linear inequalities, find a 0-1 solution.

x + x, =1 x, = 0 :
variables are
Xy + x, =1 x = 1 «— 0 or ]
Xo + x, + x, =2 x, = 1

SAT. Given a system of boolean equations, find a binary solution.

(x'yor x%) and (xy or x,) = true X, = false variables are
(xo or x;) and (x, or x\,) = false x, = false true or false

(xporx,) and (x'y) = true X, = true



Four fundamental problems

LSOLVE. Given a system of linear equations, find a solution.

LP. Given a system of linear inequalities, find a solution.

ILP. Given a system of linear inequalities, find a 0-1 solution.

SAT. Given a system of boolean equations, find a binary solution.

Q. Which of these problems have poly-time algorithms?
 LSOLVE. Yes. Gaussian elimination solves N-by-N system in N3 time.
« LP. Yes. Ellipsoid algorithm is poly-time. <«— but was open problem for decades
e ILP, SAT. No poly-time algorithm known or believed to exist!

but we still don't know for sure



Search problems

Search problem. Given an instance 7 of a problem, find a solution S.
Requirement. Must be able to efficiently check that S is a solution.

poly-time in size of instance |

sy jolyon.co.uk

or report
none exists



Search problems

Search problem. Given an instance 7 of a problem, find a solution S.
Requirement. Must be able to efficiently check that S is a solution.

LSOLVE. Given a system of linear equations, find a solution.

Ox, + 1lx;, + 1x, = 4 X, = -1
2x, + 4x, - 2x, = 2 x = 2
Ox, + 3x;, +15x, = 36 X, = 2

instance | solution S

To check solution S, plug in values and verify each equation.



Search problems

Search problem. Given an instance 7 of a problem, find a solution S.
Requirement. Must be able to efficiently check that S is a solution.

LP. Given a system of linear inequalities, find a solution.

48x, +16x;, +119x, = 88 .
5x, + 4x, + 35x, = 13 Yo = :
15x, + 4x, + 20x, = 23 o= 1
X » X , x, = 0 X =)
instance | solution S

To check solution S, plug in values and verify each inequality.



Search problems

Search problem. Given an instance 7 of a problem, find a solution S.
Requirement. Must be able to efficiently check that S is a solution.

ILP. Given a system of linear inequalities, find a binary solution.

x + x, =1 xo, = 0
X, + x, =1 x, = 1
Xg + X, + x, =2 x, = 1
instance | solution S

To check solution S, plug in values and verify each inequality.



Search problems

Search problem. Given an instance 7 of a problem, find a solution S.

Requirement. Must be able to efficiently check that S is a solution.

SAT. Given a system of boolean equations, find a boolean solution.

(x';or x%) and (xo or x;) = true xo = false
(xo or x;) and (x| or x';) = false x; = false
(xoor x,) and  (x'p) = true Xy = lrue
instance | solution S

To check solution S, plug in values and verify each equation.

20



Search problems

Search problem. Given an instance 7 of a problem, find a solution S.
Requirement. Must be able to efficiently check that S is a solution.

FACTOR. Given an n-bit integer x, find a nontrivial factor.

AN

input size = number of bits

147573952589676412927 193707721

instance | solution S

To check solution S, long divide 193707721 into 147573952589676412927.

21
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NP

Note: classic definition limits

Def. NP is the class of all search problems. < \p 5 yes-no problems

poly-time

) instance |
algorithm

problem description

LSOLVE Find a vector x that . .
s Gaussian elimination 2x, +4x, - 2x, = 2 X o= 2
(4, b) satisfies Ax =b Ox, + 3x +15x, -

w
N
-

S

I
\S}

] 48x, +16x; +119x, = 88 x, = 1
LP Find a vector x that . Sx, + 4x, + 35x, = 13
. e ellipsoid 15x, + 4x, + 20x, = 23 o= 1
(4,b) satisfies Ax <b ’ 1 ’ X o= %
Xo . X .,  x, = 0 2 5
) ) =0
ILP Find a binary vector x . ot o= i z‘) X
[ X, + X = 1 =
(A, b) tha.t SatiSﬁes Ax Sb xz + X+ xz < 2 X, = 1
. (x'yor x'5) and (x, or x,) = true = fal
SAT Find a boolean vector x e e Yo = Jabe
o ??? (xo orx,) and (x, or x'y) = false x, = false
(D, b) that satisfies ®(x) =5 Goorxy and (v = true %, = true
FACTOR Find a nontrivial factor
77 147573952589676412927 193707721

of the integer x

(x)

Significance. What scientists and engineers aspire to compute feasibly.

24



Def. P is the class of search problems solvable in poly-time.

\ Note: classic definition limits
P to yes-no problems

poly-time

' instance |
algorithm

problem description

Ox, + 1x, + Ix,

Find a vector x that Gaussian elimination

LSOLVE

2x, + 4x, - 2x, = x, = 2
(A4, b) satisfies Ax = b (Edmonds 1967) Ox, + 3n 4155 = 36 x; _
. 48x, +16x; +119x, = 88 . = 1
LP Find a vector x that ellipsoid Sx, + 4x + 35x, = 13 0 .
X =

(A’ b) SatiSﬁes Abe (KhaChlyan ]979) 15)(0 + 4x1 + 2Ox2 = 2(?; xl j y
Xo N X y X, = 2 - 5

SORT Find a permutation that mergesort 2.3 8.5 1.2 524013

(a) puts array a in order (von Neumann 1945) 9.1 2.2 0.3

STCONN Find a path in a depth-first search
(G, s, t) graph G from s to ¢ (Theseus)

Significance. What scientists and engineers do compute feasibly.

25



Nondeterminism

Nondeterministic machine can guess the desired solution.

AN

recall NFA implementation

EX.int[] a = new int[N];
e Java: initializes entries to 0.
« Nondeterministic machine: initializes entries to the solution!

ILP. Given a system of linear inequalities, guess a 0-1 solution.

Xy + x, =1 x, = 1

Xo + X + x, =2 x, = 1
0:x

Ex. Turing machine.
« Deterministic: state, input determines next state. 0iy
« Nondeterministic: more than one possible next state. @

NP. Search problems solvable in poly time on a nondeterministic TM.

26



Extended Church-Turing thesis

P = search problems solvable in poly-time in the natural world.

Evidence supporting thesis. True for all physical computers.

Natural computers? No successful attempts (yet).
doesn't work

for large N
Ex. Computing Steiner trees with soap bubbles

S —
—

STEINER: Find set of lines of minimal length
connecting N given points

Implication. To make future computers more efficient,
suffices to focus on improving implementation of existing designs.

27



P vs. NP

Does P = NP ?

Copyright © 1990, Matt Groening

Copyright © 2000, Twentieth Century Fox

28



Automating creativity

Q. Being creative vs. appreciating creativity?

Ex. Mozart composes a piece of music; our neurons appreciate it.
Ex. Wiles proves a deep theorem; a colleague referees it.

Ex. Boeing designs an efficient airfoil; a simulator verifies it.

Ex. Einstein proposes a theory; an experimentalist validates it.

creative ordinary

Computational analog. Does P = NP?



The central question

P. Class of search problems solvable in poly-time.
NP. Class of all search problems.

Does P = NP ? [Can you always avoid brute-force searching and do better]

Two worlds. .

<>

P = NP P=NP

If P = NP... Poly-time algorithms for SAT, ILP, TSP, FACTOR, ...
If P = NP... Would learn something fundamental about our universe.

Overwhelming consensus. P # NP.

30



The central question

P. Class of search problems solvable in poly-time.
NP. Class of all search problems.

Does P = NP ? [Can you always avoid brute-force searching and do better]

Millennium prize. $1 million for resolution of P = NP problem.

_ Clay Mathematics Institute

= " »J—Dedicated to-increasing and disseminating mathematical knowledge

HOME ABOUT CMI PROGRAMS NEWS & EVENTS AWARDS SCHOLARS PUBLICATIONS

» Birch and Swinnerton-Dyer
Conjecture

Millennium Problems

In order to celebrate mathematics in the new millennium, The Clay > Hodge Conjecture
Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven » Navier-Stokes Equations
Prize Problems. The Scientific Advisory Board of CMI selected these problems, »P vs NP

focusing on important classic questions that have resisted solution over the » Poincaré Conijecture

years. The Board of Directors of CMI designated a $7 million prize fund for the
solution to these problems, with $1 million allocated to each. During the
Millennium Meeting held on May 24, 2000 at the Collége de France, Timothy
Gowers presented a lecture entitled The Importance of Mathematics, aimed for » Rules

the general public, while John Tate and Michael Atiyah spoke on the problems. » Millennium Meeting Videos
The CMI invited specialists to formulate each problem.

» Riemann Hypothesis
» Yang-Mills Theory

Wt fox oriames apuiast the 3500 Bikes, He bn & 3 Struiee Kier
O e b to b o atrmety

$1,000,000
REwarnD
T S
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Periodic table of the

elements

* Lanthanide
Series

+ Actinide
Series

Periodic Table
of the Elements

ng _IVB_ VB _VIB ViIB ——ViIl—— IB__|IB

34



A key problem: satisfiability

SAT. Given a system of boolean equations, find a solution.

X'y or X, or X3 = true
xior x's or x3 = true
x'yor x'y or x'5 = true

x'ior x'y or x4, = true

Key applications.
« Automatic verification systems for software.
« Electronic design automation (EDA) for hardware.
« Mean field diluted spin glass model in physics.



Exhaustive search

Q. How to solve an instance of SAT with » variables?
A. Exhaustive search: try all 27 truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for SAT.

\ J
Y

“intractable"

Consrafu'afions, A
it only took you
652989 seconds 4

Wy jolyon.co.uk

36



Classifying problems

Q. Which search problems are in P?
A. No easy answers (we don't even know whether P = NP).

Cook reduction

e
Problem X poly-time reduces to problem Y if X can be solved with:

e Polynomial number of standard computational steps.
e Polynomial number of calls to Y.

instance | Algorithm

: solution Sto |
: forY
(of X) :

Algorithm for X

Consequence. If SAT poly-time reduces to Y, then we conclude that Y
is (probably) intractable.

37



SAT poly-time reduces to ILP

SAT. Given a system of boolean equations, find a solution.

X'y or X, or X3 = true
xXjyor x's or x3 =true
I 2 3 <«——— can to reduce any SAT problem to this form

x'yor x'y or x's = true

x'yor x'y or x4, =true

ILP. Given a system of linear inequalities, find a 0-1 solution.

I <= (I —x1) + x + X3
I <= x1 + (1=-x) + x3
Il <= (I=-x)+A=-x) + (1-x3)

Il <= (I=x1)+(=-x)+ x4

solution to this ILP instance gives solution to original SAT instance

38



More poly-time reductions from boolean satisfiability

SAT
3-COLOR IND-SET VERTEX COVER Dick Karp
'85 Turing award
wn
>
@
o
a
EXACT COVER E CLIQUE HAM-CYCLE
(@)
=
A\ 4
SUBSET-SUM ILP TSP HAM-PATH
v
PARTITION

\ Conjecture. SAT is intractable.

KNAPSACK BIN-PACKING

Implication. All of these problems are intractable.

39



Still more reductions from SAT

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer ai, ..., a,, COMmpute /:Trcos(m@)xcos(ag@)><-~><cos(an9) df
Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley-Shubik voting power.

Recreation. Versions of Sudoko, Checkers, Minesweeper, Tetris.
Statistics. Optimal experimental design.

plus over 6,000 scientific papers per year
40
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NP-completeness

Def. An NP problem is NP-complete if every problem in NP poly-time
reduce to it.

Proposition. [Cook 1971, Levin 1973] SAT is NP-complete.

\ every NP problem is a

Extremely brief proof sketch: SAT problem in disguise

o« Convert non-deterministic TM notation to SAT notation.
« If you can solve SAT, you can solve any problem in NP.

—

nondeterministic TM SAT instance

Corollary. Poly-time algorithm for SAT iff P = NP.

43



Implications of Cook-Levin theorem

SAT —
B -

S Aﬁ )

Stephen Cook Leonid Levin
'82 Turing award

3-COLOR

EXACT COVER CLIQUE HAM-CYCLE

SUBSET-SUM TSP HAM-PATH

All of these problems (and many, many more)

\

KNAPSACK BIN-PACKING

poly-time reduce to SAT.




Implications of Karp + Cook-Levin

CLIQUE HAM-CYCLE
SUBSET-SU. TSP<«—> HAM-PATH
PARTITION
l All of these problems are NP-complete; they are

manifestations of the same really hard problem.

KNAPSACK «<—> BIN-PACKING

46



Implications of NP-Completeness

Implication. [SAT captures difficulty of whole class NP]
« Poly-time algorithm for SAT iff P = NP.
« No poly-time algorithm for some NP problem = none for SAT.

Remark. Can replace SAT with any of Karp's problems.

Proving a problem NP-complete guides scientific inquiry.
« 1926: Ising introduces simple model for phase transitions.
« 1944: Onsager finds closed form solution to 2D version in tour de force.
« 19xx: Feynman and other top minds seek 3D solution.
e« 2000: 3D-ISING proved NP-complete. N a holy grail of statistical mechanics

\

search for closed formula appears doomed

47



Two worlds (more detail)

Overwhelming consensus (still). P = NP.

NP
P = NP P =NP

Why we believe P = NP.

“ We admire Wiles' proof of Fermat's last theorem, the scientific theories of Newton,
Einstein, Darwin, Watson and Crick, the design of the Golden Gate bridge and the

Pyramids, precisely because they seem to require a leap which cannot be made by

»

everyone, let alone a by simple mechanical device. — Avi Wigderson

48



Summary

P. Class of search problems solvable in poly-time.

NP. Class of all search problems, some of which seem wickedly hard.
NP-complete. Hardest problems in NP.

Intractable. Problem with no poly-time algorithm.

Many fundamental problems are NP-complete.
e SAT, ILP, HAMILTON-PATH, ...
« 3D-ISING, ...

Use theory a guide:

A poly-time algorithm for an NP-complete problem would be a stunning
breakthrough (a proof that P = NP).

You will confront NP-complete problems in your career.

Safe to assume that P # NP and that such problems are intractable.
Identify these situations and proceed accordingly.

49
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Exploiting intractability

Modern cryptography.
« Ex. Send your credit card to Amazon.
« Ex. Digitally sign an e-document.
« Enables freedom of privacy, speech, press, political association.

RSA cryptosystem.
» To use: multiply two r-bit integers. [poly-time]
e To break: factor a 2 n-bit integer. [unlikely poly-time]

Multiply = EASY

23 x67 <+—— 1,541

Factor = HARD

54



Exploiting intractability

Challenge. Factor this number.

740375634795617128280467960974295731425931888892312890849362
326389727650340282662768919964196251178439958943305021275853
701189680982867331732731089309005525051168770632990723963807
86710086096962537934650563796359

RSA-704
($30,000 prize if you can factor)

Can't do it? Create a company based on the difficulty of factoring.

P £ @ PRINE
N=PQ
£D = | mob (P-Dia-h §

C= M" AOD N ®
R S s
Ne= PR
€0 5 [ oD (P-IXa-D
Cw M:N

M= C" pnoD N

The RSA algorithm Is the
most widely used method
of implementing public key
cryptography and has been
deployed in more than one
billion applications
worldwide.

15 05T AN ALGomITIN

RSA sold
RSA algorithm for $2.1 billion or design a t-shirt

55



Exploiting intractability

FACTOR. Given an n-bit integer x, find a nontrivial factor.

Q. What is complexity of FACTOR?
A. In NP, but not known (or believed) to be in P or NP-complete.

Q. What if P = NP?
A. Poly-time algorithm for factoring; modern e-conomy collapses.

Proposition. [Shor 1994] Can factor an n-bit integer in »n? steps
on a "quantum computer.”

Q. Do we still believe the extended Church-Turing thesis???

56



Coping with intractability

Relax one of desired features.
« Solve arbitrary instances of the problem.

Special cases may be tractable.
« Ex: Linear time algorithm for 2-SAT. <— at most two variables per equation

e Ex: Linear time a|gorithm for Horn-SAT. «<— at most one un-negated variable per equation

57



Coping with intractability

Relax one of desired features.

« Solve the problem to optimality.

Develop a heuristic, and hope it produces a good solution.

« No guarantees on quality of solution.
« Ex. TSP assignment heuristics.

« Ex. Metropolis algorithm, simulating annealing, genetic algorithms.

Approximation algorithm. Find solution of provably good quality.

« Ex. MAX-3SAT: provably satisfy 87.5% as many clauses as possible.

\

but if you can guarantee to satisfy 87.51% as many clauses
as possible in poly-time, then P = NP !

58



Coping with intractability

Relax one of desired features.

« Solve the problem in poly-time.
Complexity theory deals with worst case behavior.

e Instance(s) you want to solve may be "easy."
o Chaff solves real-world SAT instances with ~ 10K variable.

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz Conor F. Madigan Ying Zhao, Lintao Zhang, Sharad Malik
Department of EECS Department of EECS Department of Electrical Engineering

UC Berkeley MIT Princeton University

moskewcz @alumni.princeton.edu cmadigan@mit.edu {yingzhao, lintaoz, sharad}@ee.princeton.edu
ABSTRACT Many publicly available SAT solvers (e.g. GRASP [8],

Boolean Satisfiability is probably the most studied of
combinatorial optimization/search problems. Significant effort
has been devoted to trying to provide practical solutions to this
problem for problem instances encountered in a range of
applications in Electronic Design Automation (EDA), as well as
in Artificial Intelligence (AI). This study has culminated in the

POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been
developed, most employing some combination of two main
strategies: the Davis-Putnam (DP) backtrack search and heuristic
local search.  Heuristic local search techniques are not
guaranteed to be complete (i.e. they are not guaranteed to find a
satisfying assignment if one exists or prove unsatisfiability); as a

59
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